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DISTRIBUTION IS UNLIMITED

Development of a new boundary layer code has reached the status to permit meaningful
>_ applications. Computations have been carried out for the initiation of separation in the symmetry
C _ plane of a prolate spheroid of slenderness ratio 1/4, impulsively started into forward motion at zero
C-D incidence and also at 50 degrees angle. This case serves as validation by comparing with
C-) previously published results of Xu and Wang (ref. 1), and also demonstrates that our method gives
~. informatron of flow near the rear stagnation point not available in the literature. More studies have

been performed on the optimization of surface suction to delay or prevent the unsteady separation
for an impulsively started circular cylinder. Here the methodology should be of interest. Work on
an unsteady three-dimensional thin-layer Navier-Stokes code, however, is progressing slowly.
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Technical Rept for AFOSR 88-0229, for the period Oct. '89 to Feb. '90

by S.F. Shen, Cornell University

We have reached the termination date of the Grant 88- 0229, except for a new
minimal extension to enable us to bring our major effort, Wu's study of the unsteady
separation process on a three-dimensional body, to at least some concrete conclusion by the
end of August, 1990. While we are grateful for Capt. Helin's sustained interest in our
project, the amount available to us from AFOSR will not cover half the cost. We shall try
to manage with forced reductions of expenditure in the last few months and the principal
investigator is taking zero compensation.

The progress of the project between Oct. '89 and Feb. '90 in all three active studies
outlined in the last Technical Report ( Oct. '89) is summarized as follows. They consist of:

1) Three-dimensional unsteady separation over an impulsively started prolate
spheroid, at zero and also 50 degrees of angle of attack;

2) Feasibility study of controlling two-dimensional unsteady separation over a
circular cylinder by surface suction;

3) Development of an unsteady thin-layer ('parabolized') Navier-Stokes code for
boundary-layer behavior subsequent to the initiation of separation.

Project 1) has been carried out by T.Wu. During this period the focus has been a
NEW three-dimensional unsteady boundary-layer Eulerian code for flow in the symmetrical
plane. After careful validation it is now in operational form. The first application was to
recalculate the case in the published work of Xu and Wang (ref. 1), having to do with the
process leading to initial separation in the plane of symmetry. Our procedure in principle
has two major advantages: the multizone formulation eliminates the difficulty associated
with the geometrical singularity, and the initial-value approach allows accurate treatment of
the moving stagnation points. A paper has been prepared for presentation at the
International Symposium on Nonsteady Flows at the joint ASME and CSME (Canadian)
meeting, June '90 in Toronto, Ont. A copy is attached as Appendix A.

Project 2) has been the assignment of Z. Xiao. The basic idea is to exploit our
time-accurate Eulerian unsteady boundary-layer code, to study the effects on the initiation
of unsteady separation due to various parameters related to the variable motion, as well as
the boundary conditions that may suggest strategies for separation control. The Eulerian
code must be able to locate incipient separation that has been made clear by our persistent
demonstration via the Lagrangian interpretation. In the Eulerian description, most experts
now generally agree that the precursor, or signature, of imminent separation is a locally
very sharp 'spike' in the displacement thickness. We first establish that in the bench-mark
case of an impulsively started circular cylinder, the van Dommelen and Shen (ref.2)
solution, recast as the displacement thickness along the wall, is indeed duplicated by our
new Eulerian code. Preliminary results have been obtained on the efficacy of delaying or
eliminating the occurrence of the 'spike', hence separation, with the application of various
surface suction arrangements. These were included in an invited presentation, by
S.F.Shen, at the Workshop on Analytical Methods in Unsteady Separation, sponsored by
Army ARO, January '90, Columbus OH. A copy of the handout of the talk was submitted
with our Technical Report for Oct. '89.



We hope for more results on optimization of controlling unsteady separation before
his departure. Because of the budget limitation, however, Mr. Xiao's association with
AFOSR-sponsored research will be terminated no later than March 1, 1990.

Project 3) has occupied the attention of Dr. J. S.Kim since his arrival from S.
Korea in may '89. As described in earlier Technical Reports, Dr. Kim's attack follows his
previous experiences with the Navier-Stokes solver. To rewrite some of the program for
use in the Cornell Supercomputer facility proved to be quite time consuming, esp. for
applications targeted for three-dimensional bodies. Considerable debugging efforts have
been necessary during the present period, and so far the test trials involve only simple
geometry and small numbers of time steps. As Dr. Kim is obligated to return to Korea on
April 1, 1990, and no funding for possible replacement, it seems unrealistic to expect the
final achievement of this work to be more than preliminary exploration. A description of
Kim's work can be found in Appendix B.

With regard to publication and presentotion, the paper by Shen and Wu (AIAA
Paper 88- 3542 ) is now 'in the press' of the AIAA Journal, after a prolonged unfortunate
status as a 'missing manuscript' in the editor's office. In January S.F.Shen gave a
colloquium on 'Unsteady Boundary Separation from the Lagrangian View' at the
University of Arizona, Tuscon, AZ, followed by the invited talk of the same title (but
somewhat different content, including some of the separation control results) at the
Columbus Workshop. Wu's results to-date will be presented at the ASME meeting in
Toronto this June, already mentioned above.
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..k MULTI-ZONE TIME-MARCHING TECHNIQUE FOR UNSTEADY
SEPARATING THREE-DIMENSIONAL BOUNDARY-LAYERS AND ITS

APPLICATION TO TIlE SYMMETRY-PLANE SOLUTION OF AN
IMPULSIVELY-STARTED PROLATE SPHEROID

Tzuvin Wu* and Shan-Fu Shen **
Sibley School of Mechanical and Aerospace Engineering

Comell University
Ithaca, New York, 14853

ABSTRACT 8 difference operator in finite-difference equations

Recent interest in unsteady separation and separated flows brings 4ndicating difference: also, displacement thickness

up the need of an accurate and efficient computational scheme for E stretching factor of the mapping in a-direction
general unsteady three-dimensional boundary-layer flows. Resolution 1.1 average operator in finite-difference equations
of the singular behavior at separation is a delicate problem. The task
is further complicated by the geometrical singularity and the non- Pdensity
stationary stagnation point. The present paper proposes a numerical t wall shear
scheme to sidestep these difficulties. As the first stage of Subscripts
development, the simpler problem of the symmetry-plane solution of o stagnation
the laminar boundary-layer over an impulsively started prolate s separation
spheroid is calculated. Results show that the present Eulerian xy,z components in x, y and z directions respectively
calculation satisfactorily captures the singular behavior of the indicating derivativcs
boundary-layer when separation is approached. Comparison with Xu Superscripts
and Wang's recent results and those for the two-dimensional elliptic n nth time level in finite-difference equations
cylinder calculated by the Lagrangian method are also made.
Discussions of the results for unsteady separation at zero, small and () quantities in nose region
large incidences are presented. -) quantities in tail region

NOMENCLATURE INTRODUCTION

D1,D2 mapping constants in 3-direction The separation of three-dimensional laminar boundary-layer has
e eccentricity of spheroid long been an intriguing subject of both basic and practical interest.
hj,h 2,h3  metric coefficients Even in the steady case, the separation "pattern" on the body surface,
p pressure as observed in the experiments, takes a variety of forms. Recent
S transformed coordinate defined in equation (4) progress in the qualitative theory and the actual computations have

time greatly improved our understanding of the complex phenomena Ql-
t/c thickness ratio 11]). In the steady flow, zero wall shear signifies separation and the
u velocity component in x-direction breakdown of the boundary-layer equation. The usual analysis of
Ue value of u at edge of boundary-layer steady separation is to focus on the limiting streamlines at tje wall-
v velocity component in y-direction For the unsteady case, it is now well-known that separation starts
VC value of v at ed-e of boundary-Iayer "off" the wall and neither the wall shear nor the wall streamlines can
vv derivative of v in v-direction serve as reliable indicators of separation. But very little is known
V1e value of Vv at edge of boundary-layer about the details of the phenomenon. Even numerical exarmoles are
Vo,Vg0 constants in the velocity distribution at edge of hard to come by, since efficient and reliable computational schemes

boundarv-aver for calculating the general unsteady three-dimensional bounda-v laver
w velocity component in z-direction flow still are not well developed.
x streamwise coordinate along the major axis of prolate In steady flow, the separation of the boundary-layer over a prolate

spheroid spheroid at various incidence angles has been the subject of several
circumferential coordinate computational studies due to Wang ([6-81, [12-141). Two different

a bound~ur,-layer coordinate normal to x and y direction types of separation, "open" and "closed", based on the wall limiting
A streamlines analysis are proposed. In his tcrminology, the
ax angle of attack convergence of the limiting streamlines defines the separation line on
a,3 computational coordinates the body. At small incidence, a "closed" type separation prevails

where the separation line completely ,cparates the limiting streamlines
* Graduate Research Assistant originating from different stagnation points. At moderate incidence.

** John Edson Sweet Professor of Engineering the separation line is approached on two sides by limiting steanlines
originating from the same ,tagnation noint. This t-rr of separation is



then classified as "open" separation, since two separation lines, one patterns are generated and developed can only he anv.xcrec by
on each side of the spheroid are formed and are not connected on the computation of the flow off the s'ymmetry plane. Much more rema:ns
lee-side symmea-y plane. In a recent paper of Xu and Wang ( 151, the to be done.
evolution of the skin friction on the symmetry plane of an impulkivelv
started spheroid is studied. They suggest an unsteady analogy of the FORMULATION OF THE PROBLEM
above "open" and "closed" separations, the term "separation" used in
their study referring to vanishing skin friction in the streamwise The geometry and the boundary-layer coordinate system of a
direction. An off-symmetry-plane calculation of the above problem prolate spheroid, following Xu and Wang [151, are specified in Fig. 1.
has been perfortiied hy Ragab (161. Focus of his work is on the The metric coefficients h1,h 2 and h3 are detined as
crosswise separation at high incidence. The computational domain
covers only the front quarter of the prolate spheroid. His results of -
skin friction lines support the "open" type separation advocated by h I -- x h3 = I ; e -tc
Wang for unsteady three-dimensional flows. Following van l-x-
Dommelen and Shen [17. 181, unsteady boundar,-layer separation is
better defined by the termination of the boundary-layer solution in a where t/c denotes the ratio of minor to major axis (axes ratio). After a
singularity. In the two-dimensional problem, the occurrence of a proper scaling with the free stream velocity and the half-chord length
singularity and its structure have been well established (e.g. [17-201). of the prolate spheroid, the non-dimensional forms of the boundary-
In the three-dimensional case, this singularity may form a curve layer equations on the symmetry plane are, in conventional notation,
whose projection on the wall can then be properly defined as the
"separation line" (Shen [211). The concept is consistent with that of 8u 8w ah=,
van Dommelen and Cowley [221, in which the authors examine the hax + hlVy + hlh 2 -T- + u 0 ()
asymptotic structure of the unsteady three-dimensional separation in a
Lagrangian coordinates system. In fact, the structure of separation is au u au a -I a 2u
found to be quasi two-dimensional. + + W -= - (2)

Confirmation of this singularity at separation was not part of Xu h pht
and Wang's calculatton. but is the focal point of the present paper. In
order to do so, the numerical scheme has been modified. It is noticed, Crosswise momentum equation is identically zero on the symmetry
for instance, that no details of the flow near the trailing edge were plane. A supplementary equation can be obtained by differentiating it
included in their results. As pointed out in Cebeci et al. ([ 101, [11 1, with respect to the circumferential coordinate y:
[231), a "geometrical singularity" is present at both ends of the prolate
spheroid when a body-oriented coordinates system is used. in Xu v u v V vh - a
and Wang [15, no provision was made for the singularities, and their -Y+ '-- + w + h + hh "tV ph,2 + z--
method might lead to local difficulty and inaccuracy, particularly for a - - az
slender spheroid. Another problem of the space-marching schemes
usually adopted in solving a boundary-layer type equation is where vv stands for Dv/Dy. Based on the velocity profiles u and vy,
associated with the stability consideration. In the unsteady case, the the skin hiction and the displacement thickness are defined by
grid size in the reversed flow region is limited by the domain-of-
dependence rule (CFL criterion). In particular, the restriction on the r= (Du )z= K s1- >dz.
time step can become so stringent that the calculation is practically d" Z--01, e
prevented from proceeding further [24]. Still another technical 0
difficulty of the space-marching method is the requirement of a The above governing equations are then subject to a Rayleigh t-.'pe
starting profile to initiate the spatial integration. This is not available initial condition for an impulsively-started motion. As usual, no slip
in the general case involving arbitrary body motion for which the boundary conditions are imposed on the wall, and the velocities at the
stagnation point is non-stationary. outer edge of the boundary-layer must approach the values specified

The present paper is actually the first phase of a more ambitious by the inviscid potential flow:
research program dealing with general three-dimensional unsteady
separation over an arbitrarily moving body. In developing a solution u = v = 0 at z= 0
scheme, we abandon the conventional space-marching technique and
choose instead a more classical initial-value approach. That is, the U ,,2 )2 Cos + V ,t sin ' cos y
solution is advanced in the time direction only. This allows the u = U e  f V0(-x 90 c
calculation of more general unsteady flows as it does not require a
fixed stagnation point to construct the flow downstream. In
conjunction with an implicit time-marching scheme, a flow dependent, Vy = Vye V90 i Q cos y at z=oo
one-sided spatial difference is applied to discretize the convection
terms in accordance with the CFL criterion. The severe restriction on where & = angle of attack,
the time step is thus relieved. Finally, to overcome the difficulty of
the aforementioned "geometri,-al singularity", we propose a multi- e2 2V
domain attack. Suitable transformation which removes the singularity V0 = V90 - 2V0 - I
is applied at both front and tail regions. Calculations are performed I -e2 , 1+e
separately in each region, and the solutions are patched on the 1- I-n
interfaces by interpolation procedure.

For an orderly development, we limit ourselves first to redo the As already mentioned in the introduction, a difficufty of the
case of a prolate spheroid, following Xu and Wang [15]. The present spherical coordinates system is that the metric coefficients hI,
following presents mainly the boundary-layer development in the h2 become singular at both x=-l and x=+l. A transformation which
symmetrical plane of an impulsively-started prolate spheroid. The removes this geometric singularity was proposed by Cebeci et al.
governino coitations and the relevant coordinates transformation are [10], [23]. Define
given in the next section. Details of the numerical scheme and the
solution procedure are also described. Calculations are performed for 2S h~dx 4l-e2 , 2 d,
three differcnt a,,gies of aitack : 00, 60 and 500. Comparison with X- - - C ( l- )

' -
and Wang [15] are made. In addition, the results are compared with S (1 -x 2)
those for the two-dimensional elliptic cylinder calculated by the
Lagrangian method. The ignificance of the findings of the first it follows
occurrence of three-dimensional separation on the lee-side and wind-
side, at small and large angles of incidence are discussed. If and
when and how different unsteady three-dimensional separation

2



in the w-direction gives the mesh clustering effect near the leading and
=exp -- Fe(ex - 2xA2 ll e + 1 .- - trailing edges where the pressure gradient vanes rapidly. The time+

N- l-e *5 - like 3 coordinate removes the singular behavior in the flow at

where A and B are mapping constants. With transformation (4), and impulsive tart-up. A uniform grid is drawn in the o-(3 plane, and the

further let governing eluations are discretized in terms of these computational
coordinates.

In contrast to the conventional space-marching technique in
, = S cos y u = u cos y + v sin v solving tile boundary-layer type equation, we next formulate strictly

an initial-value problei,_ In which the flow variables in each region are
y = S sin v v = -u sin Y + v, cos y advanced in the time-direction only. A siiidar approach was already
= z w = W carried out in Van Dalsem and Steger 1321 who used a time-relaxation

scheme in their calculations. We seek to reduce the computation effort
Equati s 1), (2) and (3) then become at each time step by adopting a non-iterative predictor-corrector

formulation, Douglas (331. That is, in advancing the :n s 'cp f.oin ,

l I - a to n+l, a predicted value is first evaluated at n+l/2 where all the non-
- -v + -- u = 0 5) linear coefficients in the momentum equations are linearized by using

x- o-z the values frozen from the previous time n. Thus the governing
equations are decoupled in the predictor step. A backward Euler

u _ a )6 I 1 p 2u differencing in time is preferred in solving the predictor value for the
u + - - - + (6) purpose of damping out the numerical error. Second order accuracy

h dx Oz ph Ox Oz- of temporal difference can be restored by following a Crank-Nicolson
like correction step.

2 -In both the predictor and the corrector steps, a flow dependent,
+ i v_ I + w 1u (xv u -l p + 1(7) one-sided spatial difference is applied to the convection term in

.,2 accordance with its hyperbolic character (backward difference if u>0
and forward difference for u<O). Unlike the usual marching scheme

-, i where flow quantities needed to account for the backflow influence are
whlere - h -R h, I ~hh grabbed from the previous time level. By appealing to the CFL

w hee =- , = - ( - j7 - ) criterion, this explicit formulation will then restrain the time step used
in the discretization procedure. This is particularly important as the

Equations (5), (6), and (7) are now regular at x=-l. Similar restriction on the step size can be very stringent when separation is
treatment can be applied to remove the singularity at the rear end x=+l approached [24]. In the present scheme, an implicit time-advancing
and we shall not restate the derivation here. In the following context, approach is used, and upwind differences are performed at the current
quantities in the transformed coordinates near the trailing edge of the time level throughout the whole domain. The CFL condition is

satisfied automatically, allowing us to relax the time-step limitation.
prolate spheroid will be denoted by (~). The formulation is very similar in both the predictor and corrector

steps. By applying the above discretization procedures to (2) and (3).
SOLUTION METHOD the following are the resulting finite difference equations in the

The solution domain is decomposed into four regions as shown in computational plane-(ct,3) for the corrector step:
Fig.2. The transformed coordinate system described in the last
section is used in the nose and tail regions to remove the geometry A + At ,2z2 At( 1,-13,,w)( tn+1 12 n+
singularity. Each region is overlapped with the adjacent ones. 1+ La

6
o - = 2 l8 )5 Aq

Calculations are performed separately in different regions, the required 2h tAct 2AP2  4A(
boundary conditions on the interface of one region are then obtained
from interpolating the values at the interior points of the other region. -At a 2 -axu ± ,Z_2 ( 3,z-32 n3W)
Successful results where similar composite-grid techniques have been h - +At----ot - ,532 13 }+ A+1 un  (8)
applied were reported in several previous investigations of Navier- phI, hlAa ". 2Ap

Stokes flows ([25], [26]), transonic flows ([271, [28], [291), Euler
equations ([291, [301), and the combined Navier-Stokes, Euler and A,+u± t _.3,22 At(3,zz-13.- 3 ,zw) n+In n I
boundary-layer equations [31]. The principal advantages of 2hlAct " 2A52  " 4P [245)3( Ay
composite-grid are the generation of grids for regions of complicated
geometry, and an easier implementation of different formulations in 2
different regions. However, the "patching" of the solutions between -At a. At(v,)2 112 At +n+I/2n+/2
different regions needs attention. Care must be taken so that the ph-) ay 2  h2  - hth 2  -x

interpolation procedure on the interface will not destroy the stability
and accuracy of the interior solution. See, e.g. Chesshire and
Henshaw (251. In the following calculations, a cubic Lagrangian At 3 5 -02 82 ( ' 7-t.1-w)2),tn+/2 n
interpolation formula was used. No apparent error and instability hAot  A032 A Y
were observed in this particular numerical example.

The physical domain is more conveniently transformed into a finite n+1 n+ -n

computational region (ot,P3) by using appropriate mapping functions. q

In the main region, for example, n+) n+1 n
AXqy = Vy -Vy

x = (x 2-x) [(1-0)(3-2at) ax2 + ECt)l + x1  
o < I

t,x, 3t, P3,z and 13 ,zz denote the derivatives of the corre,-r,r-ing

t0 mapping functions. The difference operators used 'se

S q t+ an 2 0-. 1an defined in Warming and Beam (341:

where xi, xi and DI, D2 are constants, e is a small number which 6 = (')i+1/2 - (')i-1/2 8+ = ()i+I - ()i ()I - I,.

controls the stretching in the streamwise coordinate x. The mapping 82 ()i - 2('), + (.)i- -. = 1/2 [ ()i+1/2 + (1, I ]

3



Equatinns (8) and (9) are then factored into two sweeps by the are obtained from interpolating the flow variables in the nose and tail

approximate factorization procedure of Warming and Beam 1341, regions respectively. Specifically, the crossw:ic skin friction in the

Each sweep involves solving a system of ,igebraic equations with a main rerion is related to that in the nose through the transformation
scalar tri-diagonal coefficient matrix T y - ; Cos y + i- " o , o. y

In general, terms on the right hand side of the above transformation do
t 2____. (2p8)3lt/2 A*Iqi = RIHS of (8) not sum up to zero due to discretization and hence introducing error on

A 8 - q'the interface. It can be seen from Fig.6 that this error on the left
interface is quickly damped out after a few nodal points, while the

At o ,,u 6_}n+1/2 i1+
t 

_ n+l error on the downstream interface does not propagate back into the
1 + .. .. q domain because of the upwind differencing. The accuracy of the

2htAct solution at the interior points is found to be essentially unaffected.

aing solved u and vv, the transverse velocity w can be updated The displacement thickness Ax is given in Fig.7 and Fig.g In the
. t t c rule. main region (Fig.7), the flow changes slowly over a large part of the

' hbody except very close to the trailing edge where the boundary-layer
Similar difference schemes are applied to tie equations in the increases drastically. Figure 8 shows the details just ahead of the

trmnsformed coordinates systems for the nose and tail regions. Their trailing edge. A "4Aike"-like structure similar to that discovered in the
final forms are omitted here for brevity. Lagrangian computations of two-dimensional problems ([17], [181,

The accuracy of the predictor-corrector method used has been
studied by Douglas [33} on l-D model equations. The results show [351) is observed near X=-0.08. In order to be convinced that it is notthat for a transient problem, the overall accuracy in time is of second created by numerical instability, the calculation was carried out again

in several refined meshes and reduced time steps. Results show only
order. Linearized von Neumann stabilit, analysis of the corrector step a
predicts the scheme to be unconditionally stable if the one-side "sharper" spike and the overall picture does not change. Formerly,
prdierence cnrms ith he fcowdition. stei the fo e this "spike"-like behavior has only been found in Lagrangian
difference conforms with the flow direction. In the following computations. Most of the previous two-dimensional boundary-laver
numerical examples, no instability was encountered in the results calculated by the Eulerian formulation encountered difficultv
calculations. Furthermore, in order to preserve second order accuracyin the spatial direction, the convection terms were discreized by a near "separation" and consequently did not give a conclusive
intheepati difenhe onvetionla Ts we res discreni a pn displacement thickness variation at this point (e.g. [36-39]). Failure
three-point upwind difference formula. This will result in a penta to obtain a converged and stable solution in these calculations upon

diagonal matrix in the c:-sweep rather than tri-diagonal during the approaching separation may be attributed to the aforementioned severe
factorization procedure. Both matrices were solved using well limitation on the step size needed in the conventional space-marching
vectorized penta- and ni-diagonal solvers. technique. The present time-marching Eulerian scheme proves to be

not only stable but also capable of confirming the critical features near
RESULTS AND DISCUSSION separation which were previously obtained by the Lagrangian

computation.
Calculations were done for the symmetry plane of a prolate The behavior of the displacement thickness reflects the behavior of

spheroid with axes ratio 1/4 and various angles of attack which typify the velocity profile u. Shown in Fig.9 is the velocity profile at several

the axisymmetry (0), low incidence (60) and high incidence (50 )  t locitys.rois f o n in g is te ty r e at several

categories. To assure the convergence of the solution, a numerical test locations. It is found that starting from t'O. 19, there is an unusual
on the effects of grid refinement was performed first and the results "clustering" of the velocity profiles around Z=-0.045. The same
are included in the appendix. At each different incidence, the skin phenomenon was reported in Cebeci [36). The clustering of the
friction and displacement thickness are presented and discussed in the velocity profiles results in a "kink" in the .N distribution at t=0.20,
following subsections. The focus will be on the initiation of vityol ts i a snk n the ningdi n atmt=of2th
separation evidenced by the emergence of a Lagrangian singularity in Fig.8. Beyond t'=0.20, there is a sudden thickening in some of the
the flow. Because of the similarity between the flow in the symmetry velocity profiles (Figs.9b, c) which in turn leads to a fast increase in
plane and the two-dimensional cylinder case, comparison with the the displacement thickness at such locations. The peculiar velocity

results obtained from the two-dimensional elliptic cylinder with the profiles are only found to occur in a very narrow region of i. Further
same axes ratio is made, and certain analogy between the two flows is into the reversed flow regime, the velocity profiles look normal again.
shown. The formation of the sharp "spike" and the "valley" immediately

All the numerical computations were performed on the Cornell following in the displacement thicknesses for t>0.20, Fig.8. are thus
National Supercomputer Facility. For a typical 30,000 grid points explained.
(including all four regions) used in each of the present examples, the Accompanying this thickening of the displacement thickness is the
required CPU time in advancing one time step was around 2 seconds sudden growth in the transverse velocity . From the Lagrangian
on IBM 3090-600E. About 45% of the job was executed under the view point (v18], [40)), the thickening happens because a certain fluid
vector mode, and the measured vector speed-up was 3. More effort is "packet" gets squeezed in the streamwise direction and must expand
being made to improve the percentage of vectorization of the program. laterally in order to preserve the volume. Since in the axisymmetry

case every meridian plane that cuts through the prolate spheroid is a
0,..Incidence symmetry plane, the critical fluid packets form a front that has no

choice but to explode in the direction normal to the wall. The
The zero degree incidence case was not included ir. Xu and projection of this front onto the wall encircles the spheroid, and is the

Wang's calculation [ 151. It is given here as a bench test of the present logical generalization of the separation point for two-dimensional
numerical scheme. Calculated wall shear and displacement thickness flows. It unequivocally defines the "separation line" for unsteady

are shown in Figs.3 to 8. In the nose region, the skin friction "t, three-dimensional separation.
quickly approaches a steady value (Fig.3) while in the tail region, The singular behavior of the boundary-layer at separation is also
Fig.4, a reversed-flow region is seen to form shortly after the seen from the continuously increasing Da/Di near separation.
impulsive start and spread subsequently toward the leading edge. According to the two-dimensional Lagrangian computation of van
Also notice that due to the small axes ratio, the reversed flow is Dommelen [18], DU'i should blow up at separation. Moreover, the
confined in a narrow region near the trailing edge, and the skin friction velocity profile near separation should exhibit a very "flat" front
does not vary much along most part of the body (Fig.5). Figure 6 corresponding to a large inviscid region that splits the boundary-layer
plots the distribution of crosswise skin friction ty,y. Owing to the into two vorticity layers. The present Eulerian calculation did find a

axisymmetry property of the flow at 00 incidence, the value of tyy is thickening of some velocity profiles as was shown in Fig.9, but none

zero in this particular case. However, as pointed out in the previous of the profiles are very "flat". Now, given a grid size, a simple

section. quantities on the left and right interfaces of the main region estimation based on the Taylor series expansion would suggest an
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upper bound of the value au/ax that can be determined by near the front end is found, and the value of T, at the dip drops

differencing. Specifically, when the term (Au/,tx) becomes order quickly thereafter. According to the large time calculation of Xu andn oher Wang [151, this value will eventually become negative as a small1, the finite difference formula ceases to be meaningful. In other n
recirculating bubble is established. A similar situation was found in a

words, if the mesh Ax-O.007, which was the grid size near separation high-incidence elliptic cylinder [351 where a reversed flow appears at

in this case, the maximum Au/Ax we can get is roughly 150. Indeed early time near the leading edge. The skin friction in the tail region is
in the calculation, it is found that thc ma-ximunt value of A hardly presented in Fig. 16. In this picture, the rear stagnation point is

exceeded this order. As such a maximin is reached, the singularity is located at x=-0.23. By the definition of the coordinate transformation,
smeared out by the numerical diffusion, and the legitimacy of positive x points to wind-side direction. Therefore, positive wall
continuing the calculation becomes questionable. Higher resolution shear around x0 in this plot actually corresponds to a recirculating
thus is needed to obtain more accurate velocity profiles near flow near the rear end. The recirculation region first occurs just

separation. Further discussion about this will be given in the shortly above the trailing edge and then expand in both directions.
subsequent sections.

The zero cK point moving toward the wind-side direction appears to
0' Incidence stop at x=0.01, and the recirculation region does not penetrate further

upstream. In fact, the skin friction at the wind-side seems to have
This can be considered as an axisymmetry flow perturbed by a already reached a steady value at t=0.12. The same trend was also

small angle of attack. It is expected that most of the features will be fo:nd in the previous two-dimensional calculation [351.
similar to those in the 00 incidence. Figure 10 shows the lee-side skin An interesting behavior in the lee-side crosswise skin friction is
friction, also superimposed is the result by Xu and Wang [151. The demonstrated in Fig.17, The reversal of circumferential velocity v
ivo results do aeree in the general trend but not in the values. The (positive 'tyy) first occurs at the rear end and the zero y,y point
skin friction in the tail region is plotted in Fig. 11 where details of a quickly moves upstream. At t=0.08, another region of reversed v
small region of reversed flow near the trailing edge are revealed. appears at the front and grows in the downstream direction. These
(This was not available in [151.) Again, no anomalous phenomenon two regions coalesce at approximately t=0.12 which means the flow
is found in the wall shear, and the whole picture looks almost the near the symmetry plane is moving away from the plane over the
same with the one in the previous case (Fig.4) except now the rear entire lee-side except for a small part close to the leading edge. It is
stagnation point has shifted upstream a little bit from the rear end. In believed that the reversal of the crosswise velocity v will have an
the present numerical scheme, the velocity profile at the stagnation important influence on the off-symmetry-plane separation.
point is not needed to construct the flow as normally done in a space- At such a high angle of attack, the lee-side displacement thickness
marching technique. The stagnation flow evolves by itself. From at small time still remains essentially constant along most part of the
Fia. 11, it is seen that both the stagnation point and the asymmetry of body (Fig.18). Yet a "hump" resulting from the "dip" in the skin
the flow due to the small angle of attack are well captured in the friction (Fig. 15) is evolved at t=0.05. Near the rear end, the
calculation. displacement thickness shows a sharp increase and forms a "spike"

Figure 12 exhibits a non-zero distribution of crosswise skin almost right at the trailing edge (Fig.19). This fact suggests a possible

friction ty y at lee-side. At small times, cy,y remains negative which difficulty of the method used by Xu and Wang [15) in obtaining
indicates that the circumferential velocity v near the symmetry plane is accurate results near the trailing edge, because they did not remove the
pointing toward the plane of symmetry. As time increases, a region of geometrical singularity there. The reason that the "spike" at t=0.12

appears to be sharper than those presented in the previous cases of this
positive "ty y begins to develop near the trailing edge. In other words, paper is cue to a somewhat higher resolution in the present case. The
a small crosswise reversed flow is formed at the rear end. This
reversed flow region will then extend gradually toward the leading grid size Ai near the trailing edge here is approximately 0.001.
edge direction with increasing time. The present results are consistent According to the argument stated at the end of the first subsection, the
with those described in [15]. maximum AU/ta that can be obtained here is around 1000, which is

Both the lee-side and wind-side displacement thicknesses in the an order larger than that in the zero incidence case. Associated with
tail region are shown in Figs.13 and 14. (Details of the displacement this result is a "flatter" velocity profile near separation (Figs.20a, b).
thickness near the rear end were left out in Xu and Wang [151, Although the relevant profiles are not too smooth, the trend is clear.
therefore no comparison is made.) By examining Fig.13, it is Shown in Fig.21 is one of the corresponding vorticity profiles. The
observed that a "spike" appears first in the wind-side displacement splitting of the boundary-layer into two vorticity layers is apparent.
thickness at t=0.25. If we accept the assumption that the initial The calculation was terminated at t=0.12 after the presence of a
separation does not substantially alter the flow over the lee-side and singularity on the wind-side. Whether or not another singularity may
simply proceed with the calculation, a similar "spike"-like structure is appear at the lee-side near the leading edge can not be answeredat this
also found to occur on the lee-side at a somewhat later time (Fig. 14). moment. However, suggested by the large time calculation of Xu and
Without the benefit of off-symmetry-plane solution, it may be Wang [15] and the former results on the elliptic cylinder [351, it is
conjectured here that the separation is likely to occur first as a point on likely that another singularity would devetop at later time near the front
the wind-side symmetry plane and then expand with increasing time in end, and afterwards the separation would probably be of the "closed"
both circumferential directions, and finally, meet on the lee-side n aterwarsith epr lo
symmetry plane to form a closed curve. Turning to the Lagrangian type at this high incidence.
interpretation, because of the presence of a small incidence, fluid Comparison with Two-Dimensional Results
"packets" on each different meridian plane will now deform
differently. The time at which these "packets" might get squeezed The results of an unsteady boundary-layer over an impulsi,,cly
into zero thickness would also differ. Besides, the three-dimensional started elliptic cylinder with axes ratio 1/4, calculated by the
geometry offers the fluid "packets" a chance to expand in the Lagrangian method described in [35], are presented here for
crosswise direction. The details of how the separation, after its comparison. Shown in Figs.22a, b, c are the displacement
initiation from the wind-side symmetry plane, propagates along the
circumferential directon is a question that can only be answered after a thicknesses at 00, 60 and 500 incidence. In these plots, the time t has

fully three-dir-nsional calculation over the entire prolate spheroid is been converted to conform with the present time scale, denotes the
made. streamwise boundary-layer coordinate measured along the body from

the leading edge in the clockwise direrion. Resemblance berw,- ... 1:1
M.O Incidence two cases is clear (cf. Figs.8, 14, 19) except that in the Lagran{,'n

result, the "spike" is steeper and more pronounced. This is i . d

After the impulsive start-up, the lee-side skin friction decreases from the high resolution of the Lagrangian grid near separation "I
from a maximum value at the leading edge to zero at the rear Besides, the displacement thickness in the Lagrangian calculation is
stagnation point (Fig.15). However, beginning from t=0.05, a dip obtained from integrating the continuity equation which turms singular
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as the separation is approached. Cornell National Supercomputer Facility, a resource of the Center for
It is noticed that for all three incidences calculated here, separation Thcorv and Simulation in Science and Engineering (Theory Ccnter),

occurs earlier in time in the two-dimensional case. This can be which'receives major funding from the National Science Foundation
attributed to the curvature effect as well as the non-zero crosswise and IBM Corporation, with additional support from New York State
velocity Vy in the present three-dimensional calculation. and members of the Corporate Research Institute.
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I. Introduction

Since the noniterative factorization method for the compressible

Navier-Stokes equation was developed by Beam & Warmming(l), several

similar noniterative methods have been investigated to solve the

comoressible and the incompressible flows. In Beam & Warmming(l)'s

technique, the governing equation can be noniteratively solved without

loss of accuracy. This scheme is a kind of three point backward implicit

ADI method develooed by McDonald and Briley(2).

But, even though the Navier-Stokes can be solved without

iterations, a large amount of computer time and storage is needed

to solve any simple flow. Though only the steady solution is needed,

the unsteady equation is calculated in time until a steady state solution

is achieved. Moreover, it is possible to obtain the accurate solutions

of many viscous flows with several reduced sets of equations, such

as boundary layer equations, thin-layer, or parabolized Navier-Stokes

equations. So, many researchers have developed the noniterative methods

to solve the reduced sets of equations.

T'hese noniterative methods, which have been developed on the

base of Beam & Warmming's delta scheme, can be divided into two

catagories, i. e. one for compressible flows, and another for

incompressible flows. Steger(3) used the technique to solve the unsteady

thin-layer Navier-Stokes equation. The thin-layer Navier-Stokes equation

is considerably less complicated than the complete Navier-Stokes



equation because of the approximation of dropping some viscous terms in

the Navier-Stokes equation. But, the procedure of calculation still

requires a substantial amount of computer effort to solve three

dimensional flows. So, Schiff and Steger(4) developed the noniterative

scheme to solve the parabolized Navier-Stokes equation to predict three

dimensional, steady, supersonic viscous flowfield. This method requires

that the inviscid outer flow must be supersonic and the primary

streamwise velocity component must be positive everywhere. But the cross

flow separation is permitted. An additional constraint is that the

streamwise pressure gradient in the region of subsonic must be handled

to neglect the elliptic characteristics of the governing equation.

As above, though many noniterative schemes have been developed and

popularly used to solve compressible flows, only a few schemes have been

developled for incompressible flows. Kim and Chang(5) used the

noniterative technique to solve for unsteady incompressible boundary

layers. But, it can not be applied to the flow which includes the region

of reverse flow, exept for some spetial cases. Kwak(6) developed the

technique to solve the steady incompressible Navier-Stokes equation

using the artificial compressibility method of Chorin(7). Although this

method used the linearized factorization technique, it is the iterative

scheme to obtain steady solutions.

Some iterative methods have been developed to solve the steady

parabolized Navier-Stokes equation. The streamwise derivative term of

pressure is treated explicitly in these methods. In Patankar and

Spalding(9), the pressure in the streamwise momentum equation is

assumed to vary only in the streamwise direction. But, the variation of

pressure in a cross plane is permitted. Chilukuri and Pletcher(lO)
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considered the effect of the elliptic characteristic by marching in the

streamwise direction in an iterative method. This scheme was originally

restricted to flows in which the reverse flow in the primary flow

direction doesnot occur. But, Madavan and Pletcher(ll) have demonstrated

two dimensional flows in which the reverse flow in the primary flow

direction occurs. But, all of these methods are iterative methods for

steady solutions.

Here, a code is developed to solve the unsteady 3-dimensional

thin-layer Navier-Stokes equation by using the noniterative finite

difference method. At first, the Navier-Stokes equation written in the

general coordinates (2,,) is simplified by the thin-layer

approximation, which neglect the viscous terms including the derivatives

of the streamwise or the spanwise direction. This thin-layer equation is

linearized and factorized by the noniterative technique. The resulting

factorized equation is solved by a 3-step block tri-diagonal matrix

elimination. The central difference is used to discretize the

derivatives of the spanwise and the normal directions, but the central

or backward difference is used for the streamwise direction.

The flow which has a leading edge stagnation point can not be solved by

the central difference, because the results are unstable between the

initial point and the leading edge stagnation point. So, the backward

difference is applied to the derivatives of velocities in the

momentum equations between the initial point and the leading edge

stagnation point. This method helps to stabilize the scheme, but the

results are slowly disturbed again from the leading edge stagnation

point.

3



Some numerical examples are investigated, such as the transient

development of Couette flow, the flow over a suddenly started finite

flat plate, the flow over a suddeily started circular cylinder and

the transient flow over a 3-dimensional wave wall.

4
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